Exponential decay in the mapping class group

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniform convergence in the mapping class group

We characterize convex cocompact subgroups of the mapping class group of a surface in terms of uniform convergence actions on the zero locus of the limit set. We also construct subgroups that act as uniform convergence groups on their limit sets, but are not convex cocompact.

متن کامل

Accidental Parabolics in the Mapping Class Group

In this paper we discuss the behavior of the Gromov boundaries and limit sets for the surface subgroups of the mapping class group with accidental parabolics constructed by the author and A. Reid (2006). Specifically, we show that generically there are no Cannon–Thurston maps from the Gromov boundary to Thurston’s boundary of Teichmüller space.

متن کامل

Rigidity Phenomena in the Mapping Class Group

Throughout this article we will consider connected orientable surfaces of negative Euler characteristic and of finite topological type, meaning of finite genus and with finitely many boundary components and/or cusps. We will feel free to think about cusps as marked points, punctures or topological ends. Sometimes we will need to make explicit mention of the genus and number of punctures of a su...

متن کامل

Uniform uniform exponential growth of subgroups of the mapping class group

Let Mod(S) denote the mapping class group of a compact, orientable surface S. We prove that finitely generated subgroups of Mod(S) which are not virtually abelian have uniform exponential growth with minimal growth rate bounded below by a constant depending only on S.

متن کامل

Centroids and the rapid decay property in mapping class groups

We study a notion of an equivariant, Lipschitz, permutationinvariant centroid for triples of points in mapping class groups MCG(S), which satisfies a certain polynomial growth bound. A consequence (via work of Druţu-Sapir or Chatterji-Ruane) is the Rapid Decay Property for MCG(S).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the London Mathematical Society

سال: 2012

ISSN: 0024-6107

DOI: 10.1112/jlms/jds011